ICTP
Coding material for "Artificial Intelligence for Quantum Applications" Lecture Series at ICTP-WE Hearaus ML+manybody school in Trieste 2024.
Lecture Notebooks
Supervised learning with feed-forward networks: Notebook 1
Supervised learning with convolutional neural networks: Notebook 2
Ultracold atoms Hamiltonian learning examples: Notebook 3, Notebook 4
Extra material
Quantum dot tuning exercises: QD Tuning 1, QD Tuning 2
PCA + more unsupervised learning examples: Unsupervised Learning Notebook
key QMAI papers about topics discussed
Unsupervised learning of topological phases:
Eliska Greplova, Agnes Valenti, Gregor Boschung, Frank Schäfer, Niels Lörch, Sebastian Huber: Unsupervised identification of topological order using predictive models, New J. Phys. 22 045003 (2020)
[arXiv: 1910.10124][code]Tuning of quantum dots:
Renato Durrer, Benedikt Kratochwil, Jonne V. Koski, Andreas J. Landig, Christian Reichl, Werner Wegscheider, Thomas Ihn, Eliska Greplova: Automated tuning of double quantum dots into specific charge states using neural networks, Phys. Rev. Applied 13, 054019 (2020), editors’ suggestion
[arXiv: 1912.02777][code]Hamiltonian learning for cold atoms:
Agnes Valenti, Guliuxin Jin, Julian Leonard, Sebastian Huber, Eliska Greplova: Scalable Hamiltonian learning for large-scale out-of-equilibrium quantum dynamics, Phys. Rev. Research 4, L012010 (2022)
[arXiv:2103.01240][code]Conditional GANs Hamiltonian learning
Rouven Koch, David van Driel, Alberto Bordin, Jose L. Lado, Eliska Greplova: Adversarial Hamiltonian learning of quantum dots in a minimal Kitaev chain, Phys. Rev. Applied 20, 044081 (2023).
[arXiv: 2304.10852][code]
If you want to learn more, check out our full publication list here.